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Abstract

Coordinated campaigns are used to influence and manipulate
social media platforms and their users, a critical challenge to
the free exchange of information online. Here we introduce
a general, unsupervised network-based methodology to un-
cover groups of accounts that are likely coordinated. The pro-
posed method constructs coordination networks based on ar-
bitrary behavioral traces shared among accounts. We present
five case studies of influence campaigns, four of which in the
diverse contexts of U.S. elections, Hong Kong protests, the
Syrian civil war, and cryptocurrency manipulation. In each
of these cases, we detect networks of coordinated Twitter
accounts by examining their identities, images, hashtag se-
quences, retweets, or temporal patterns. The proposed ap-
proach proves to be broadly applicable to uncover different
kinds of coordination across information warfare scenarios.

Introduction
Online social media have revolutionized how people access
news and information, and form opinions. By enabling ex-
changes that are unhindered by geographical barriers, and
by lowering the cost of information production and con-
sumption, social media have enormously broadened partici-
pation in civil and political discourse. Although this could
potentially strengthen democratic processes, there is in-
creasing evidence of malicious actors polluting the informa-
tion ecosystem with disinformation and manipulation cam-
paigns (Lazer et al. 2018; Vosoughi, Roy, and Aral 2018;
Bessi and Ferrara 2016; Shao et al. 2018; Ferrara 2017;
Stella, Ferrara, and De Domenico 2018; Deb et al. 2019;
Bovet and Makse 2019; Grinberg et al. 2019).

While influence campaigns, misinformation, and propa-
ganda have always existed (Jowett and O’Donnell 2018),
social media have created new vulnerabilities and abuse op-
portunities. Just as easily as like-minded users can connect
in support of legitimate causes, so can groups with fringe,
conspiratorial, or extremist beliefs reach critical mass and
become impervious to expert or moderating views. Platform
APIs and commoditized fake accounts make it simple to
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develop software to impersonate users and hide the iden-
tity of those who control these social bots — whether they
are fraudsters pushing spam, political operatives amplifying
misleading narratives, or nation-states waging online war-
fare (Ferrara et al. 2016). Cognitive and social biases make
us even more vulnerable to manipulation by social bots:
limited attention facilitates the spread of unchecked claims,
confirmation bias makes us disregard facts, group-think
and echo chambers distort perceptions of norms, and the
bandwagon effect makes us pay attention to bot-amplified
memes (Weng et al. 2012; Hills 2019; Ciampaglia et al.
2018; Lazer et al. 2018; Pennycook et al. 2019).

Despite advances in countermeasures such as machine
learning algorithms and human fact-checkers employed by
social media platforms to detect misinformation and inau-
thentic accounts, malicious actors continue to effectively de-
ceive the public, amplify misinformation, and drive polar-
ization (Barrett 2019). We observe an arms race in which
the sophistication of attacks evolves to evade detection.

Most machine learning tools to combat online abuse tar-
get the detection of social bots, and mainly use meth-
ods that focus on individual accounts (Davis et al. 2016;
Varol et al. 2017; Yang et al. 2019; 2020; Sayyadiharikandeh
et al. 2020). However, malicious groups may employ coor-
dination tactics that appear innocuous at the individual level,
and whose suspicious behaviors can be detected only when
observing networks of interactions among accounts. For in-
stance, an account changing its handle might be normal, but
a group of accounts switching their names in rotation is un-
likely to be coincidental.

Here we propose an approach to reveal coordinated be-
haviors among multiple actors, regardless of their auto-
mated/organic nature or malicious/benign intent. The idea
is to extract features from social media data to build a co-
ordination network, where two accounts have a strong tie if
they display unexpectedly similar behaviors. These similar-
ities can stem from any metadata, such as content entities
and profile features. Networks provide an efficient represen-
tation for sparse similarity matrices, and a natural way to
detect significant clusters of coordinated accounts. Our main
contributions are:

• We present a general approach to detect coordination,
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which can in principle be applied to any social media plat-
form where data is available. Since the method is com-
pletely unsupervised, no labeled training data is required.

• Using Twitter data, we present five case studies by in-
stantiating the approach to detect different types of co-
ordination based on (i) handle changes, (ii) image shar-
ing, (iii) sequential use of hashtags, (iv) co-retweets, and
(v) synchronization.

• The case studies illustrate the generality and effectiveness
of our approach: we are able to detect coordinated cam-
paigns based on what is presented as identity, shown in
pictures, written in text, retweeted, or when these actions
are taken.

• We show that coordinated behavior does not necessarily
imply automation. In the case studies, we detected a mix
of likely bot and human accounts working together in ma-
licious campaigns.

• Code and data are available at github.com/IUNetSci/
coordination-detection to reproduce the present results
and apply our methodology to other cases.

Related Work
Inauthentic coordination on social media can occur among
social bots as well as human-controlled accounts. How-
ever, most research to date has focused on detecting social
bots (Ferrara et al. 2016). Supervised machine learning mod-
els require labeled data describing how both humans and
bots behave. Researchers created datasets using automated
honeypot methods (Lee, Eoff, and Caverlee 2011), human
annotation (Varol et al. 2017), or likely botnets (Echeverria,
Besel, and Zhou 2017; Echeverria and Zhou 2017). These
datasets have proven useful in training supervised mod-
els for bot detection (Davis et al. 2016; Varol et al. 2017;
Yang et al. 2019).

One downside of supervised detection methods is that
by relying on features from a single account or tweet,
they are not as effective at detecting coordinated accounts.
This limitation has been explored in the context of detect-
ing coordinated social bots (Chen and Subramanian 2018;
Cresci et al. 2017; Grimme, Assenmacher, and Adam 2018).
The detection of coordinated accounts requires a shift to-
ward the unsupervised learning paradigm. Initial applica-
tions focused on clustering or community detection algo-
rithms in an attempt to identify similar features among
pairs of accounts (Ahmed and Abulaish 2013; Miller et al.
2014). Recent applications look at specific coordination di-
mensions, such as content or time (Al-khateeb and Agar-
wal 2019). A method named Digital DNA proposed to en-
code the tweet type or content as a string, which was then
used to identify the longest common substring between ac-
counts (Cresci et al. 2016). SynchroTrap (Cao et al. 2014)
and Debot (Chavoshi, Hamooni, and Mueen 2016) lever-
age temporal information to identify clusters of accounts
that tweet in synchrony. Content-based methods proposed
by Chen and Subramanian (2018) and Giglietto et al. (2020)
consider co-sharing of links on Twitter and Facebook, re-
spectively. Timestamp and content similarity were both used

to identify coordinated accounts during the 2012 election in
South Korea (Keller et al. 2017; 2019).

While these approaches can work well, each is designed
to consider only one of the many possible coordination di-
mensions. Furthermore, they are focused on coordination
features that are likely observed among automated accounts;
inauthentic coordination among human-controlled accounts
is also an important challenge. The unsupervised approach
proposed here is more general in allowing multiple similar-
ity criteria that can detect human coordination in addition to
bots. As we will show, several of the aforementioned unsu-
pervised methods can be considered as special cases of the
methodology proposed here.

Methods
The proposed approach to detect accounts acting in coor-
dination on social media is illustrated in Fig. 1. It can be
described by four phases:

1. Behavioral trace extraction: The starting point of coor-
dination detection should be a conjecture about suspicious
behavior. Assuming that authentic users are somewhat in-
dependent of each other, we consider a surprising lack
of independence as evidence of coordination. The imple-
mentation of the approach is guided by a choice of traces
that capture such suspicious behavior. For example, if we
conjecture that accounts are controlled by an entity with
the goal of amplifying the exposure of a disinformation
source, we could extract shared URLs as traces. Coordi-
nation scenarios may be associated with a few broad cat-
egories of suspicious traces:

(a) Content: if the coordination is based on the content
being shared, suspicious traces may include words, n-
grams, hashtags, media, links, user mentions, etc.

(b) Activity: coordination could be revealed by spatio-
temporal patterns of activity. Examples of traces that
can reveal suspicious behaviors are timestamps, places,
and geo-coordinates.

(c) Identity: accounts could coordinate on the basis of per-
sonas or groups. Traces of identity descriptors could
be used to detect these kinds of coordination: name,
handle, description, profile picture, homepage, account
creation date, etc.

(d) Combination: the detection of coordination might re-
quire a combination of multiple dimensions. For in-
stance, instead of tracing only which hashtags were
used or when accounts were active, as would be the
case for a content- or activity-based suspicious trace,
one can combine both these traces to have a temporal-
content detection approach. The combined version is
more restrictive and, therefore, can reduce the number
of false positives.

Once traces of interest are identified, we can build a net-
work of accounts based on similar behavioral traces. Pre-
liminary data cleaning may be applied, filtering nodes
with lack of support — low activity or few interactions
with the chosen traces — because of insufficient evidence
to establish their coordination. For example, an account
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Figure 1: A chart of our proposed coordination detection approach. On the left we see behavioral traces that can be extracted
from social media profiles and messages. Four steps described in the text lead to identification of suspicious clusters of accounts.

sharing few images will not allow a reliable calculation of
image-based similarity.

2. Bipartite network construction: The next step is to build
a bipartite network connecting accounts and features ex-
tracted from their profiles and messages. In this phase,
we may use the behavioral traces as features, or engi-
neer new features derived from the traces. For example,
content analysis may yield features based on sentiment,
stance, and narrative frames. Temporal features such as
hour-of-day and day-of-week could be extrapolated from
timestamp metadata. Features could be engineered by ag-
gregating traces, for example by conflating locations into
countries or images into color profiles. More complex
features could be engineered by considering sets or se-
quences of traces. The bipartite network may be weighted
based on the strength of association between an account
and a feature — sharing the same image many times is a
stronger signal than sharing it just once. Weights may in-
corporate normalization such as IDF to account for popu-
lar features; it is not suspicious if many accounts mention
the same celebrity.

3. Projection onto account network: The bipartite network
is projected onto a network where the account nodes are
preserved, and edges are added between nodes based on
some similarity measure over the features. The weight of
an edge in the resulting undirected coordination network
may be computed via simple co-occurrence, Jaccard co-
efficient, cosine similarity, or more sophisticated statis-
tical metrics such as mutual information or χ2. In some
cases, every edge in the coordination network is suspi-
cious by construction. In other cases, edges may provide
noisy signals about coordination among accounts, lead-
ing to false positives. For example, accounts sharing sev-
eral of the same memes are not necessarily suspicious if
those memes are very popular. In these cases, manual cu-
ration may be needed to filter out low-weight edges in the
coordination network to focus on the most suspicious in-

teractions. One way to do this is to preserve edges with a
top percentile of weights. The Discussion section presents
edge weight distributions is some case studies, illustrating
how aggressive filtering allows one to prioritize precision
over recall, thus minimizing false positives.

4. Cluster analysis: The final step is to find groups of ac-
counts whose actions are likely coordinated on the ac-
count network. Network community detection algorithms
that can be used for this purpose include connected com-
ponents, k-core, k-cliques, modularity maximization, and
label propagation, among others (Fortunato 2010). In the
case studies presented here we use connected components
because we only consider suspicious edges (by design or
by filtering).
In summary, the four phases of the proposed approach

to detect coordination are translated into eight actionable
steps: (i) formulate a conjecture for suspicious behavior;
(ii) choose traces of such behavior, or (iii) engineer fea-
tures if necessary; (iv) pre-filter the dataset based on sup-
port; choose (v) a weight for the bipartite network and
(vi) a similarity measure as weight for the account coordina-
tion network; (vii) filter out low-weight edges; and finally,
(viii) extract the coordinated groups. Although the proposed
method is unsupervised and therefore does not required la-
beled training data, we recommend a manual inspection of
the suspicious clusters and their content. Such analysis will
provide validation of the method and evidence of whether
the coordinated groups are malicious and/or automated.

In the following sections we present five case studies,
in which we implement the proposed approach to detect
coordination through shared identities, images, hashtag se-
quences, co-retweets, and activity patterns.

Case Study 1: Account Handle Sharing
On Twitter and some other social media platforms, although
each user account has an immutable ID, many relation-
ships are based on an account handle (called screen name
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on Twitter) that is changeable and in general reusable. An
exception is that handles of suspended accounts are not
reusable on Twitter. Users may have legitimate reasons for
changing handles. However, the possibility of changing and
reusing handles exposes users to abuse such as username
squatting1 and impersonation (Mariconti et al. 2017). In a re-
cent example, multiple Twitter handles associated with dif-
ferent personas were used by the same Twitter account to
spread the name of the Ukraine whistleblower in the US
presidential impeachment case.2

For a concrete example of how handle changes can be ex-
ploited, consider the following chronological events:

1. user 1 (named @super cat) follows user 2 (named
@kittie) who posts pictures of felines.

2. user 3 (named @super dog) post pictures of canines.

3. user 1 tweets mentioning user 2: ”I love @kittie”.
A mention on Twitter creates a link to the mentioned ac-
count profile. Therefore, at time step 3, user 1’s tweet
is linked to user 2’s profile page.

4. user 2 renames its handle to @tiger.

5. user 3 renames its handle to @kittie, reusing
user 2’s handle.

Even though user 1’s social network is unaltered regard-
less of the name change (user 1 still follows user 2),
name changes are not reflected in previous posts, so any-
one who clicks on the link at step 3 will be redirected to
user 3’s profile instead of to user 2 as originally in-
tended by user 1. This type of user squatting, in coordi-
nation with multiple accounts, can be used to promote en-
tities, run “follow-back” campaigns, infiltrate communities,
or even promote polarization (Mariconti et al. 2017). Since
social media posts are often indexed by search engines, these
manipulations can be used to promote content beyond social
media boundaries.

To detect this kind of coordination on Twitter, we applied
our approach using identity traces, namely Twitter handles.
We started from a log of requests to Botometer.org, a so-
cial bot detection service of the Indiana University Obser-
vatory on Social Media (Yang et al. 2019). Each log record
consists of a timestamp, the Twitter user id and handle,
and the bot score. We focus on users with at least ten en-
tries (queries) such that multiple handle changes could be
observed. This yielded 54 million records with 1.9 million
handles. For further details see Table 1.

Coordination Detection
We create a bipartite network of suspicious handles and ac-
counts. We consider a handle suspicious if it is shared by
at least two accounts, and an account suspicious when it
has taken at least one suspicious handle. Therefore no edges
are filtered. One could be more restrictive, for example by
considering an account suspicious if it has taken more than

1help.twitter.com/en/rules-and-policies/twitter-username-
squatting

2www.bloomberg.com/news/articles/2019-12-28/trump-
names-ukraine-whistle-blower-in-a-retweet-he-later-deleted

Conjecture Identities should not be shared
Support filter Accounts with < 10 records

Trace Screen name
Eng. trace No

Bipartite weight NA, the bipartite is unweighted
Proj. weight Co-occurrence

Edge filter No
Clustering Connected components

Data source Botometer (Yang et al. 2019)
Data period Feb 2017–Apr 2019

No. accounts 1,545,892

Table 1: Case study 1 summary

one suspicious handle. To detect the suspicious clusters we
project the network, connecting accounts based on the num-
ber of times they shared a handle. This is equivalent to using
co-occurrence, the simplest similarity measure. Each con-
nected component in the resulting network identifies a clus-
ter of coordinated accounts as well as the set of handles they
shared. Table 1 summarizes the method decisions.

Analysis
Fig. 2 shows the handle sharing network. It is a weighted,
undirected network with 7,879 nodes (Twitter accounts). We
can classify the components into three classes:

1. Star-like components capture the major accounts (hub
nodes) practicing name squatting and/or hijacking. To
confirm this, we analyzed the temporal sequence of han-
dle switches involving star-like components. Typically, a
handle switches from an account (presumably the victim)
to the hub, and later (presumably after some form of ran-
som is paid) it switches back from the hub to the origi-
nal account. These kinds of reciprocal switches occur 12
times more often in stars than any other components.

2. The giant component includes 722 accounts sharing 181
names (orange group in the center of Fig. 2). Using the
Louvain community detection algorithm (Blondel et al.
2008), we further divide the giant component into 13 sub-
groups. We suspect they represent temporal clusters corre-
sponding to different coordinated campaigns by the same
group. This investigation is left for future study.

3. Other components can represent different cases requir-
ing further investigation, as discussed next.

Fig. 2 illustrates a couple of stories about malicious be-
haviors corresponding to two of the coordinated handle shar-
ing groups, which was uncovered by others. In June 2015,
the handle @GullyMN49 was reported in the news due to
an offensive tweet against President Obama.3 More than one
year later, the same handle was still posting similar content.
In March 2017, we observed 23 different accounts taking the
handle in a 5-day interval. We conjecture that this may have
been an attempt to keep the persona created back in 2015

3minnesota.cbslocal.com/2015/06/03/obama-tweeter-says-
posts-cost-him-his-job-2/
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Figure 2: A handle sharing network. A node represents a Twitter account and its size is proportional to the number of accounts
with which it shares handles. The weight of an edge is the number of unique handles shared by two accounts. Suspicious
coordinated groups are identified by different colors. We illustrate the characteristics of a few coordinated groups, namely the
number of accounts, number of shared handles, average number of accounts with which handles are shared, and the maximum
and median number of times that a handle is switched among accounts. The number of switches is a lower-bound estimate on
the basis of our data sample. We also show tweets by independent parties who uncovered the malicious activity of a couple of
the coordinated groups, discussed in the main text.

alive and evade suspension by Twitter following reports of
abuse to the platform. Currently, the @GullyMN49 handle
is banned but 21 of the 23 accounts are still active.

The second example in Fig. 2 shows a cluster of six
accounts sharing seven handles. They have all been sus-
pended since. Interestingly, the cluster was sharing handles
that appeared to belong to conflicting political groups, e.g.,
@ProTrumpMvmt and @AntiTrumpMvmt. Some of the
suspicious accounts kept changing sides over time. Further
investigation revealed that these accounts were heavily ac-
tive; they created the appearance of political fundraising
campaigns in an attempt to take money from both sides.

Case Study 2: Image Coordination

Images constitute a large portion of the content on social
media. A group of accounts posting many of the same or
similar images may reveal suspicious coordinated behavior.
In this case study, we identify such groups on Twitter in
the context of the 2019 Hong Kong protest movement by
leveraging media images as content traces. We used the Bot-
Slayer tool (Hui et al. 2019) to collect tweets matching a
couple dozen hashtags related to the protest in six languages,
and subsequently downloaded all images and thumbnails in
the collected tweets. We focus on 31,772 tweets that contain
one or more images, and remove all retweets to avoid triv-
ial replications of the same images. More on the data source
can be found in Table 2.

Coordination Detection
Every time an image is posted, it is assigned a different URL.
Therefore detecting identical or similar images is not as sim-
ple as comparing URLs; it is necessary to analyze the actual
image content. We represent each image by its RGB color
histogram, binning each channel into 128 intervals and re-
sulting in a 384-dimensional vector. The binned histograms
allow for matching variants: images with the same vector
are either identical or similar, and correspond to the same
feature. While enlarging the bins would give more matches
of variants, we want to ensure the space is sparse enough to
retain high match precision.

We exclude accounts who tweeted less than five images
to reduce noise from insufficient support. One could tune
precision and recall by adjusting this support threshold. We
set the threshold to maximize precision while maintaining
reasonable recall. The sensitivity of precision to the support
threshold parameter is analyzed in the Discussion section.

We then construct an unweighted bipartite network of ac-
counts and image features by linking accounts with the vec-
tors of their shared images. We project the bipartite network
to obtain a weighted account coordination network, with
edge weights computed by the Jaccard coefficient. We con-
sider accounts that are highly similar in sharing the same
images as coordinated. To this end, we retain the edges with
the largest 1% of the weights (see Fig. 11). Excluding the
singletons (accounts with no evidence of coordination), we
rank the connected components of the network by size. Ta-
ble 2 summarizes the method decisions in this case.
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41 URLs46 URLs47 URLs50 URLs 16 URLs 12 URLs 11 URLs

Normal Coordinated

59 URLs 3 URLs 3 URLs 2 URLs

61 URLs

Account Coordination Network

Connected Components
of Coordinated Accounts 

Pro Hong Kong Protest

Anti Hong Kong Protest

3 URLs

Figure 3: An account coordination network about Hong Kong protest on Twitter. Nodes represent accounts, whose sizes are
proportional to their degrees. On the left-hand side, accounts are colored blue if they are likely coordinated, otherwise gray. On
the right-hand side we focus on the connected components corresponding to the likely coordinated groups. The three largest
components are colored according to the content of their images — one pro- and two anti-protest clusters, in purple and orange
respectively. We show some exemplar images shared by these groups, along with the corresponding numbers of distinct URLs.

Conjecture Unlike to upload duplicated images
Support filter Accounts with < 5 tweets w/image

Trace Raw images
Eng. trace RBG intervals (128 bins on each ch.)

Bipartite weight NA, the bipartite is unweighted
Proj. weight Jaccard similarity

Edge filter Keep top 1% weights
Clustering Connected components

Data source BotSlayer (Hui et al. 2019)
Data period Aug–Sep 2018

No. accounts 2,945

Table 2: Case study 2 summary

Analysis
Fig. 3 shows the account coordination network. We iden-
tify three suspicious clusters involving 315 accounts, post-
ing pro- or anti-protest images. The anti-protest group shares
images with Chinese text, targeting Chinese-speaking audi-
ences, while the pro-protest group shares images with En-
glish text.

We observe that some of the shared image features corre-
spond to the exact same image, others are slight variants. For
example, the 59 image URLs corresponding to the same fea-
ture in the pro-protest cluster include slight variations with
different brightness and cropping. The same is true for 61
corresponding anti-protest images.

Although this method identifies coordination of accounts,
it does not characterize the coordination as malicious or be-

Shooting in
#Oklahoma just took

an American life.
#POTUS, please do

something.
#BackfireTrump

Tweet 1

Another life just lost
in #Illinois. #POTUS,

please end the
suffering.

#BackfireTrump

One more person
was just killed in

#Oklahoma.
#POTUS, it’s your job

to take action.
#BackfireTrump

#Illinois is suffering
after shooting takes 2
lives. #POTUS, stop

the bloodshed.
#BackfireTrump

Hashtag
Sequences

...

...

Finding
#CoordinatedBots in
#Twitter is like finding

two needles in a
#haystack

#Weather is #rainy and
#cold

#MissingTheCaribbean
...

Tweet N

User 1

User 2

User 3

#Oklahoma #POTUS
#BackfireTrump

...
#Illinois #POTUS
#BackfireTrump

#CoordinatedBots 
#Twitter #haystack

....
#Weather #rainy #cold
#MissingTheCaribbean

Figure 4: A hashtag sequence features. Hashtags and their
positions are extracted from tweet metadata. Accounts
tweeting the same sequence of hashtags are easily identified.

nign, nor as automated or organic. In fact, many of these
coordinated accounts behave like humans (see Discussion).
These groups are identified because their constituent ac-
counts have circulated the same sets of pictorial content sig-
nificantly more often than the rest of the population.

Case Study 3: Hashtag Sequences
A key element of a disinformation campaign is an ample
audience to influence. To spread beyond one’s followers, a
malicious actor can use hashtags to target other users who
are interested in a topic and may search for related tweets.

If a set of automated accounts were to publish messages
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Florida, POTUS, BackfireTrump, Florida,
POTUS,BackfireTrump, Illinois, POTUS,

BackfireTrump, Missouri, POTUS,
BackfireTrump, Washington, POTUS,

BackfireTrump, Texas, POTUS,
BackfireTrump, Tennessee, POTUS,

BackfireTrump, Virginia, POTUS,
BackfireTrump

CreepyJoeBiden, LasVegas,
Trump, Houston, Trump, TedCruz,

Trump, Houston, MAGARally,
TedCruz, Facebook, America,

DeepState, Trump, Trump, Obama,
Trump, CreepyPornLawyer,

MichaelAvenatti,
CreepyPornLawyer,

MichaelAvenatti, Texas, Trump,
MAGARally

Figure 5: A hashtag coordination network. Accounts are
represented as nodes, with edges connecting accounts that
tweeted the same sequences of hashtags. There are 32 con-
nected components, identified by different colors. The hash-
tag sequences shared by two of the coordinated groups (the
smallest and largest) are shown. This network is based on
tweets from October 22, 2018.

using identical text, it would look suspicious and would be
easily detected by a platform’s anti-spam measures. To min-
imize the chances of detection, it is easy to imagine a ma-
licious user leveraging a language model (e.g., GPT-24) to
paraphrase their messages. Detection could become harder
due to apps that publish paraphrased text on behalf of a
user. An example of this behavior is exhibited by the “Back-
fire Trump” Twitter app, which tweeted to President Trump
whenever there was a fatality resulting from gun violence.

However, we conjecture that even paraphrased text is
likely to include the same hashtags based on the targets of a
coordinated campaign. Therefore, in this case study we ex-
plore how to identify coordinated accounts that post highly
similar sequences of hashtags across multiple tweets.

We evaluated this approach on a dataset of original tweets
(no retweets) collected around the 2018 U.S. midterm elec-
tion. More on the data source can be found in Table 3. Prior
to applying our framework, we split the dataset into daily in-
tervals to detect when pairs of accounts become coordinated.

Coordination Detection
A data preprocessing step filters out accounts with few
tweets and hashtags. The thresholds depend on the time pe-
riod under evaluation. In this case we use a minimum of five
tweets and five unique hashtags over a period of 24 hours
to ensure sufficient support for possible coordination. More
stringent filtering could be applied to decrease the probabil-
ity of two accounts producing similar sequences by chance.

In this case we engineer features that combine content
(hashtags) and activity (timestamps) traces. In particular, we
use ordered sequences of hashtags for each user (Fig. 4).
The bipartite network consists of accounts in one layer and

4openai.com/blog/better-language-models/

Conjecture Similar large sequence of hashtags
Support filter At least 5 tweets, 5 hashtags per day

Trace Hashtags in a tweet
Eng. trace Ordered sequence of hashtags in a day

Bipartite weight NA, the bipartite is unweighted
Proj. weight Co-occurrence

Edge filter No
Clustering Connected components

Data source BEV (Yang, Hui, and Menczer 2019)
Data period Oct–Dec 2018

No. accounts 59,389,305

Table 3: Case study 3 summary

hashtag sequences in the other. In the projection phase, we
draw an edge between two accounts with identical hashtag
sequences. These edges are unweighted and we do not ap-
ply any filtering, based on the assumption that two indepen-
dent users are unlikely to post identical sequences of five or
more hashtags on the same day. We also considered a fuzzy
method to match accounts with slightly different sequences
and found similar results.

We identify suspicious groups of accounts by removing
singleton nodes and then extracting the connected com-
ponents of the network. Large components are more sus-
picious, as it is less likely that many accounts post the
same hashtag sequences by chance. Table 3 summarizes the
method decisions.

Analysis
We identified 617 daily instances of coordination carried
out by 1,809 unique accounts. Fig. 5 illustrates 32 suspi-
cious groups identified on a single day. The largest com-
ponent consists of 404 nodes that sent a series of tweets
through the “Backfire Trump” Twitter application, advocat-
ing for stricter gun control laws. This application no longer
works. Some of the claims in these tweets are inconsistent
with reports by the non-profit Gun Violence Archive. The
smallest groups consist of just pairs of accounts. One of
these pairs tweeted a link to a now-defunct page promot-
ing bonuses for an online casino. Another pair of accounts
promoted a link to a list of candidates for elected office that
had been endorsed by the Humane Society Legislative Fund.
One could of course use longer time windows and poten-
tially reveal larger coordinated networks. For example, the
Backfire Trump cluster in Fig. 5 is part of a larger network
of 1,175 accounts.

Case Study 4: Co-Retweets
Amplification of information sources is perhaps the most
common form of manipulation. On Twitter, a group of ac-
counts retweeting the same tweets or the same set of ac-
counts may signal coordinated behavior. Therefore we focus
on retweets in this case study.

We apply the proposed approach to detect coordinated ac-
counts that amplify narratives related to the White Helmets,
a volunteer organization that was targeted by disinforma-
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Conjecture High overlapping of retweets
Support filter Accounts with < 10 retweets

Trace Retweeted tweet ID
Eng. trace No

Bipartite weight TF-IDF
Proj. weight Cosine similarity

Edge filter Keep top 0.5% weights
Clustering Connected components

Data source DARPA SocialSim
Data period Apr 2018–Mar 2019

No. accounts 11,669

Table 4: Case study 4 summary

The White Helmets are
eyewitnesses to war crimes
carried out by the Assad
regime (which is backed by
Russia)...

Los White Helmets
ondeando una bandera de
Al Qaeda junto a varios
miembros en Idlib.
(translated: White Helmets
waving Al Qaeda flag with
members in Idlib.)

Figure 6: A co-retweet network. Two groups are highlighted
with exemplar retweets. Singletons are omitted.

tion campaigns during the civil war in Syria.5 Recent re-
ports identify Russian sources behind these campaigns (Wil-
son and Starbird 2020). The data was collected from Twitter
using English and Arabic keywords. More details about the
data can be found in Table 4.

Coordination Detection
We construct the bipartite network between retweeting ac-
counts and retweeted messages, excluding self-retweets and
accounts having less than ten retweets. This network is
weighted using TF-IDF to discount the contributions of pop-
ular tweets. Each account is therefore represented as a TF-
IDF vector of retweeted tweet IDs. The projected co-retweet
network is then weighted by the cosine similarity between
the account vectors. Finally, to focus on evidence of poten-
tial coordination, we keep only the most suspicious 0.5%
of the edges (see Fig. 11). These parameters can be tuned
to trade off between precision and recall; the effect of the
thresholds on the precision is analyzed in the Discussion sec-
tion. Table 4 summarizes the method decisions.

Analysis
Fig. 6 shows the co-retweet network, and highlights two
groups of coordinated accounts. Accounts in the orange and

5www.theguardian.com/world/2017/dec/18/syria-white-
helmets-conspiracy-theories

purple clusters retweet pro- and anti-White Helmets mes-
sages, respectively. The example tweets shown in the figure
are no longer publicly available.

Case Study 5: Synchronized Actions
“Pump & dump” is a shady scheme where the price of
a stock is inflated by simulating a surge in buyer interest
through false statements (pump) to sell the cheaply pur-
chased stock at a higher price (dump). Investors are vulner-
able to this kind of manipulation because they want to act
quickly when acquiring stocks that seem to promise high fu-
ture profits. By exposing investors to information seemingly
from different sources in a short period of time, fraudsters
create a false sense of urgency that prompts victims to act.

Social media provides fertile grounds for this type of
scam (Mirtaheri et al. 2019). We investigate the effective-
ness of our approach in detecting coordinated cryptocur-
rency pump & dump campaigns on Twitter. The data was
collected using keywords and cashtags (e.g., $BTC) associ-
ated with 25 vulnerable cryptocoins as query terms. We con-
sider both original tweets and retweets because they all add
to the stream of information considered by potential buyers.
More details on the dataset are found in Table 5.

Coordination Detection
We hypothesize that coordinated pump & dump campaigns
use software to have multiple accounts post pump messages
in close temporal proximity. Tweet timestamps are therefore
used as the behavioral trace of the accounts. The shorter the
time interval in which two tweets are posted, the less likely
they are to be coincidental. However, short time intervals
result in significantly fewer matches and increased compu-
tation time. On the other hand, longer (e.g., daily) intervals
produce many false positive matches. To balance between
these concerns, we use 30-minute time intervals.

Intuitively, it is likely that any two users would post one
or two tweets that fall within any time interval; however,
the same is not true for a set of more tweets. To focus on
accounts with sufficient support for coordination, we only
keep those that post at least eight messages. This specific
support threshold value is chosen to minimize false positive
matches, as shown in the Discussion section.

The tweets are then binned based on the time interval
in which they are posted. These time features are used
to construct the bipartite network of accounts and tweet
times. Edges are weighted using TF-IDF. Similar to the pre-
vious case, the projected account coordination network is
weighted by the cosine similarity between the TF-IDF vec-
tors. Upon manual inspection, we found that many of the
tweets being shared in this network are not related to cryp-
tocurrencies, while only a small percentage of edges are
about this topic. These edges also have high similarity and
yield a strong signal of coordination. Thus, we only preserve
the 0.5% of edges with largest cosine similarity (see Fig. 11).
Table 5 summarizes the method decisions.

Analysis
Fig. 7 shows the synchronized action network. The con-
nected components in the network are qualitatively analyzed
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Figure 7: A time coordination network. Nodes (accounts) are connected if they post or retweet within the same 30-minute
periods. Singletons are omitted. Accounts in the purple clusters and the small yellow cluster at 8 o’clock are highly suspicious
of running pump & dump schemes. A few tweet excerpts are shown; these tweets are no longer publicly available.

Conjecture Synchronous activities
Support filter Accounts with < 8 tweets

Trace Tweet timestamp
Eng. trace 30-minute time intervals

Bipartite weight TF-IDF
Proj. weight Cosine similarity

Edge filter Keep top 0.5% weights
Clustering Connected components

Data source DARPA SocialSim
Data period Jan 2017–Jan 2019

No. accounts 887,239

Table 5: Case study 5 summary

to evaluate precision. The purple subgraphs flag clusters
of coordinated accounts where suspicious pump & dump
schemes are observed. We find different instances of this
scheme for many cryptocurrencies. The excerpts included
in Fig. 7 are from tweets pushing the Indorse Token and Bit-
coin, respectively. These tweets allegedly state that the ac-
counts have access to business intelligence and hint at the
potential rise in coin price.

Changes in stock markets, especially those focusing on
short-term trading such as cryptocurrencies, are hard to cap-
ture due to market volatility. Furthermore, it is difficult to
attribute shifts in price to a single cause, such as pump &
dump-related Twitter activities. This makes it difficult to
quantitatively validate our results. However, in the week of
Dec 15–21, 2017 there were daily uptrends for the coins
Verge (XVG), Enjin (ENJ), and DigiByte (DGB). On each
day, the prices spiked after large volumes of synchronized

tweets commenting on their moving prices. These trends
preceded the record price for these coins to date, which was
on Dec 23, 2017 for XVG, and Jan 7, 2018 for both ENJ and
DGB. The cluster of high-volume accounts pumping these
three coins is highlighted in yellow in Fig. 7.

Inspection of the dense clusters shown in gray in Fig. 7
reveals they are composed of spam accounts or coordinated
advertisement. Although not examples of pump & dump
schemes, they do correctly reflect coordinated manipulation.

Discussion
The five case studies presented in this paper are merely il-
lustrations of how our proposed methodology can be imple-
mented to find coordination. The approach can in principle
be applied to other social media platforms besides Twitter.
For instance, the image coordination method can be applied
on Instagram, and coordination among Facebook pages can
be discovered via the content they share.

Several of the unsupervised methods discussed in the Re-
lated Work section, just like the five applications of our
method presented here, focus on different types of coor-
dination. These methods are therefore not directly com-
parable. A key contribution of this paper is to provide
a flexible and general methodology to describe these dif-
ferent approaches in a unified scheme. For example, De-
bot (Chavoshi, Hamooni, and Mueen 2016) can be described
as a special case of our approach based on a sophisticated
temporal hashing scheme preserving dynamic time warping
distance (Keogh and Ratanamahatana 2005), while Synchro-
Trap (Cao et al. 2014) exploits synchronization information
by matching actions within time windows. The methods by
Giglietto et al. (2020) and Chen and Subramanian (2018)

463



0

5

D
en

si
ty Not Suspicious

Suspicious

0

2
D

en
si

ty

0.0 0.2 0.4 0.6 0.8 1.0
Bot Score

0

5

D
en

si
ty

Figure 8: Bot scores of suspicious and non-suspicious ac-
counts. Histograms of bot scores for the suspicious accounts
identified by our methodology vs. other accounts. Top, cen-
ter, and bottom panels represent account handle sharing
(Case Study 1), image coordination (Case Study 2), and
hashtag sequence (Case Study 3), respectively. Bot scores
for Case Study 1 are obtained from version 3 of Botome-
ter (Yang et al. 2019), collected between May 2018 and
April 2019. For the other two cases, the bot scores are ob-
tained from BotometerLite (Yang et al. 2020). The datasets
may include multiple scores for the same account.

are special cases using similarity based on shared links. The
method by Ahmed and Abulaish (2013) uses a contingency
table of accounts by features equivalent to our bipartite net-
work. Finally, we explored the use of similar text within
short time windows to detect coordinated networks of web-
sites pretending to be independent news sources (Pacheco,
Flammini, and Menczer 2020).

Our approach aims to identify coordination between ac-
counts, but it does not characterize the intent or authenticity
of the coordination, nor does it allow to discover the un-
derlying mechanisms. An example of malicious intent was
highlighted in recent news reports about a coordinated net-
work of teenagers posting false narratives about the elec-
tion.6 However, it is important to keep in mind that coor-
dinated campaigns may be carried out by authentic users
with benign intent. For instance, social movement partici-
pants use hashtags in a coordinated fashion to raise aware-
ness of their cause.

Fig. 8 shows the distributions of bot scores in case studies
1–3. (We are unable to analyze bot scores in cases 4–5 due
to anonymization in the datasets.) We observe that while co-
ordinated accounts are more likely to have high bot scores,
many coordinated accounts have low (human-like) scores —
the majority in two of the three cases. Therefore, detecting
social bots is not sufficient to detect coordinated campaigns.

Although the case studies presented here are based on data
from diverse sources, they were not designed to inflate the
effectiveness of the proposed method, nor to focus on ma-
licious accounts. Fig. 9 shows that the sets of accounts an-
alyzed in case studies 1 and 3 have bot score distributions

6www.washingtonpost.com/politics/turning-point-teens-
disinformation-trump/2020/09/15/c84091ae-f20a-11ea-b796-
2dd09962649c story.html
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Figure 9: Bot score distributions. Q-Q plots comparing the
distributions of bot scores in three case studies against that
obtained from a 24-hour, 1% random sample of tweets. The
sources of the bot scores are explained in Fig. 8. All distri-
butions are heavily skewed towards lower bot score values
(i.e., more humans than bots), except Case Study 2 in which
bot scores are higher, with a near-uniform distribution.

consistent with those obtained from a random sample of
tweets. We note this is not a random sample of accounts — it
is biased by account activity. Case Study 2 is the exception;
we conjecture that bots were used to post high volumes of
images during the Hong Kong protest.

While our methodology is very general, each implemen-
tation involves design decisions and related parameter set-
tings. These parameters can be tuned to trade off between
false positive and false negative errors. In this paper we fo-
cus on minimizing false positives — organic collective be-
haviors that may appear as coordinated. For instance, false
positives could result from identical messages generated by
social media share buttons on news websites; content sim-
ilarity alone does not constitute evidence of coordination.
One way to avert false positives is to engineer features that
are suspicious by construction, as in case studies 1 and 3.
Another way is to filter accounts based on support thresh-
olds, filter edges in the coordination network based on simi-
larity, and filter clusters based on characteristics such as den-
sity or size. Fig. 10 illustrates how the support threshold af-
fects precision in case studies 2, 4, and 5, based on manual
annotations. Case Study 2 shows that support can be selected
to maximize precision. In Case Study 4, precision is high
irrespective of support because all accounts co-retweeting
a high number of tweets are suspicious in that context. In
Case Study 5, on the other hand, precision is low because
the dataset contains a large portion of tweets unrelated to
cryptocurrencies — even though they too are coordinated.
Fig. 11 illustrates the choices of edge filtering thresholds in
the same case studies.

More rigorous methods could be investigated to exclude
spurious links that can be attributed to chance. One approach
we plan to explore in future work is to design null models
for the observed behaviors, which in turn would enable a for-
mal statistical test to identify meaningful coordination links.
For example, one could apply Monte Carlo shuffling of the
bipartite network before projection to calculate the p-values
associated with each similarity link.

With the exception of the hashtag sequence feature that
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Figure 10: Precision vs support. In three of the case stud-
ies, we manually annotated accounts to calculate precision
(fraction of accounts in suspicious clusters that are actually
coordinated). Precision is plotted against support, namely,
number of images (Case Study 2), number of retweets (Case
Study 4), and number of tweets (Case Study 5).
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Figure 11: Weight distributions in coordination networks for
three case studies. Dashed lines represent edge filters: we
retain the edges with top 1% of weights in Case 2 and top
0.5% in Case 4 and 5.

combines content and activity traces, our case studies ex-
plore single behaviors in their distinct contexts. Considering
multiple dimensions could yield larger groups if the differ-
ent types of coordination are related. On the other hand, in-
dependent types of coordination could be revealed by sep-
arate clusters. To illustrate this, combining co-retweets and
shared URLs in Case Study 4 yields separate clusters, sug-
gesting distinct and independent coordination campaigns.
More work can be done in considering multiple dimen-
sions of coordination in specific scenarios. This presents the
challenge of representing interactions through multiplex net-
works, and/or combining different similarity measures.

Conclusion
In this paper we proposed a network approach to identify co-
ordinated accounts on social media. We presented five case
studies demonstrating that our approach can be applied to

detect multiple types of coordination on Twitter.
Unlike supervised methods that evaluate the features of

individual accounts to estimate the likelihood that an ac-
count belongs to some class, say a bot or troll, our ap-
proach aims to detect coordinated behaviors at the group
level. Therefore, the proposal is intended to complement
rather than replace individual-level approaches to counter
social media manipulation. Our method can also be lever-
aged to identify and characterize abusive accounts, which in
turn can be used to train supervised learning algorithms.

The proposed approach provides a unified way of tackling
the detection of coordinated campaigns on social media. As
such, it may help advance research in this area by highlight-
ing the similarities and differences between approaches.

We hope that this work will shed light on new techniques
that social media companies may use to combat malicious
actors, and also empower the general public to become more
aware of the threats of modern information ecosystems.

BotSlayer (Hui et al. 2019) lets users track narratives that
are potentially amplified by coordinated campaigns. We plan
to incorporate the framework presented in this paper into the
BotSlayer system. We believe that the framework’s flexibil-
ity, combined with the user-friendliness of BotSlayer, will
enable a broader community of users to join our efforts in
countering disinformation on social media.
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